Advances in InGaAs/InP single-photon detector systems for quantum communication

نویسندگان

  • Jun Zhang
  • Mark A Itzler
  • Hugo Zbinden
  • Jian-Wei Pan
چکیده

Single-photon detectors (SPDs) are the most sensitive instruments for light detection. In the near-infrared range, SPDs based on III–V compound semiconductor avalanche photodiodes have been extensively used during the past two decades for diverse applications due to their advantages in practicality including small size, low cost and easy operation. In the past decade, the rapid developments and increasing demands in quantum information science have served as key drivers to improve the device performance of single-photon avalanche diodes and to invent new avalanche quenching techniques. This Review aims to introduce the technology advances of InGaAs/InP single-photon detector systems in the telecom wavelengths and the relevant quantum communication applications, and particularly to highlight recent emerging techniques such as high-frequency gating at GHz rates and free-running operation using negative-feedback avalanche diodes. Future perspectives of both the devices and quenching techniques are summarized. Light: Science & Applications (2015) 4, e286; doi:10.1038/lsa.2015.59; published online 8 May 2015

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Speed Single-Photon Detection Using 2-GHz Sinusoidally Gated InGaAs/InP Avalanche Photodiode

We report a telecom-band single-photon detector for highspeed quantum key distribution systems. The single-photon detector is based on a sinusoidally gated InGaAs/InP avalanche photodiode. The gate repetition frequency of the single-photon detector reached 2 GHz. A quantum efficiency of 10.5 % at 1550 nm was obtained with a dark count probability per gate of 6.1×10−7 and an afterpulsing probabi...

متن کامل

InGaAs/InAlAs Single Photon Avalanche Diode at 1550 nm

Single photon detectors sensitive to near-infrared (NIR) wavelength light are used in an increasing number of applications, such as quantum key distribution, laser detection and ranging, and integrated circuit analysis. There are many types of NIR single photon detectors, e.g. photomultiplier tube, superconducting single photon detector and single photon avalanche diode (SPAD). However, the SPA...

متن کامل

SINGLE-PHOTON DETECTOR MODULE APPLICATION NOTE Single-photon detection with InGaAs/InP avalanche photodiodes

When most people think of detecting single-photons, photomultiplier tubes probably spring to their mind. Indeed, for a long time these were the detectors of choice in ultrasensitive detection and spectroscopy. Today, however other types of detectors allow to reach a single-photon sensitivity. Special semiconductor devices called singlephoton avalanche diodes (SPAD) have been developed, optimise...

متن کامل

Fully integrated free-running InGaAs/InP single-photon detector for accurate lidar applications.

We present a fully integrated InGaAs/InP negative feedback avalanche diode (NFAD) based free-running single-photon detector (SPD) designed for accurate lidar applications. A free-piston Stirling cooler is used to cool down the NFAD with a large temperature range, and an active hold-off circuit implemented in a field programmable gate array is applied to further suppress the afterpulsing contrib...

متن کامل

Temporal and spatial multiplexed infrared single-photon counter based on high-speed avalanche photodiode

We report on a high-speed temporal and spatial multiplexed single-photon counter with photon-number-resolving capability up to four photons. The infrared detector combines a fiber loop to split, delay and recombine optical pulses and a 200 MHz dual-channel single-photon detector based on InGaAs/InP avalanche photodiode. To fully characterize the photon-number-resolving capability, we perform qu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015